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Abstract. On the basis of a quantum approach, the formula for the complex self-energy, and
hence also that for the energy-loss cross-section, are derived for fast electrons penetrating through
the surface from the interior of a solid. Both the angular and depth dependence are included in
the expression. Use of a Drude–Lindhard model bulk dielectric functionε(q, ω) for describing
a bulk plasmon excitation in a free-electron-like material has yielded an analytical expression
for the surface dielectric function which satisfies surface sum rules. The calculated imaginary
and real parts of the electron self-energy for Si have indicated, in detail, the excitation processes
of the surface plasmon and the bulk plasmon for an electron passing through the surface, with
the dependency on electron energy and take-off angle. This approach provides quantitatively
the electron inelastic scattering cross-section in the surface region for use in surface electron
spectroscopy.

1. Introduction

Study of the inelastic scattering of electrons near a surface region is important to quantitative
analysis by means of surface electron spectroscopy. Not only may the penetrating primary
electrons incident on a target surface suffer inelastic scattering by the bulk and surface, but
also so may the backscattering electrons escaping from the surface. This inelastic scattering
contributes to single and multiple energy-loss peaks as well as the backscattering continuum.
It is quite easy to see that the surface effect becomes more important with decreasing
primary-electron-beam energy and increasing angle of incidence and take-off angle. In the
same way, signal electrons generated in the bulk in Auger electron spectroscopy and x-ray
photoelectron spectroscopy can have more chance to interact with the specimen surface
because of the exponential decay behaviour of the intensity with the depth.

With a Monte Carlo technique, the multiple-scattering processes of electrons in a bulk
material can be simulated quite well [1, 2], but an accurate and general description of
surface excitation has been difficult to obtain, because most of the existing theories [3–10]
concern only simple trajectory geometry, i.e., movement of the charge normal or parallel
to the surface. Recently, several attempts [11–13] have been made to take account of
surface effects in the treatment of electron inelastic scattering. However, in these models
an averaging over electron trajectories has been carried out; it is thus not clear how the
change between bulk excitation and surface excitation happens while an electron is crossing
a surface.
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In the first part of this paper (section 2) we shall adopt the quantum theory of Flores and
Garcia-Moliner [14] to study the complex self-energy of charged particles on the surface.
To make our development applicable to surface electron spectroscopy, we shall consider an
important case, i.e. particles moving towards the surface from the interior of a bulk sample
as well as escaping from a sample into the vacuum. The imaginary part of the complex self-
energy gives directly the energy-loss cross-section that determines the energy-loss channels
observed in surface electron spectroscopy. In section 3, a Drude–Lindhard model bulk
dielectric functionε(q, ω) for describing a bulk plasmon is employed to derive analytically
the surface dielectric function, which is shown to satisfy surface sum rules. As an example
of the use of the calculation method, we obtain results for Si and demonstrate how we find
the differential and total scattering cross-sections as functions of electron energy, direction
of movement and distance from the surface. The effect of dispersion is also shown by
comparing the result with that obtained using a dielectric function,ε(ω).

2. The electron self-energy

2.1. The calculation scheme

Let the specimen be described by a dielectric functionε(q, ω) and defined in a semi-infinite
space, wherez < 0. The external charge atr = vt moves with a velocityv = (v‖, v⊥),
wherev⊥ is positive for an electron approaching the surface from the bulk. We shall use
the atomic units(e = h̄ = m = 1) throughout. In the specular surface reflection model [15]
the induced potential is determined by the external charge, its mirror image charge and the
fictitious surface charges fixed by the boundary conditions [16, 17].

When the charge is in the vacuum(z > 0), the total scalar potentials for the
pseudovacuum (z′ > 0, wherez′ represents the field point) and the pseudometal (z′ < 0)
are respectively [14]

φV(q, ω) = 4π

q2

{
2 cos(q⊥z)+ σ+(q‖, ω)

}
(1)

φM(q, ω) = −4π

q2

σ+(q‖, ω)
ε(q, ω)

(2)

where the surface charge determined by matching conditions atz′ = 0 is

σ+(q‖, ω) = −2εs(q‖, ω)e−q‖z (3)

with a surface dielectric function defined by

ε−1
s (q‖, ω) = 1+ q‖

π

∫ ∞
−∞

dq⊥
q2ε(q, ω)

. (4)

The induced potential is obtained by removing the potential of the external charge

8ind(q, ω) = φ(q, ω)− 4π

q2
e−iq⊥z (5)

whose Fourier transformation to realz′-space yields

8(z > 0, z′ > 0) = 2π

q‖
e−q‖(z+z

′) {1− 2εs(q‖, ω)
}

(6)

8(z > 0, z′ < 0) = −2π

q‖
e−q‖z

{
eq‖z

′ − 2εs(q‖, ω)
q‖
π

∫ ∞
−∞

eiq⊥z′ dq⊥
q2ε(q, ω)

}
. (7)
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When the charge is inside the metal, we have

φV(q, ω) = −4π

q2
σ−(q‖, ω) (8)

φM(q, ω) = 4π

q2ε(q, ω)

{
2 cos(q⊥z)+ σ−(q‖, ω)

}
(9)

where

σ−(q‖, ω) = −2εs(q‖, ω)
q‖
π

∫ ∞
−∞

cos(q⊥z)
dq⊥

q2ε(q, ω)
. (10)

Then, for an isotropic dielectric function,ε(q, ω) = ε(q, ω),

8(z < 0, z′ > 0) = −2π

q‖
e−q‖z

′
{

eq‖z − 2εs(q‖, ω)
q‖
π

∫ ∞
−∞

eiq⊥z dq⊥
q2ε(q, ω)

}
(11)

8(z < 0, z′ < 0) =
∫ ∞
−∞

eiq⊥z′A(z|q, ω) dq⊥ (12)

where

A(z|q, ω) = 2e−iq⊥z
(

1

ε(q, ω)
− 1

)
1

q2
+ 2eiq⊥z 1

q2ε(q, ω)

− 4εs(q‖, ω)
q‖
π

1

q2ε(q, ω)

∫ ∞
−∞

eiq⊥z dq⊥
q2ε(q, ω)

. (13)

The three terms above explicitly display the origin of the bulk mode and the surface mode
set up by an external charge. The first term describes the screening response of an infinite
medium to the external charge and the second term that to the image charge. There is no
bare Coulomb potentialq−2 to be subtracted for the image charge term. The third one is
due to the fictitious surface charges.

In time-ordered formalism, the RPA self-energy of a system inhomogeneous in the
z-direction is written as

6(zz′|q‖, ω) = i(2π)−3
∫
8(zz′|q′‖, ω′)Gs(zz

′|q‖ − q′‖, ω − ω′) dq′‖ dω′ (14)

whereGs is the surface Green’s function which can be constructed from a bulk free-electron
Green’s function.

2.2. Infinite barrier height

For a surface barrier of infinite height, an external charge should be reflected at the surface.
The wave function of the moving electron is made up of incoming and outgoing plane
waves. The surface Green’s function is

Gs(zz
′|q‖, ω) = G(z− z′|q‖, ω)−G(z+ z′|q‖, ω)

= (2π)−1
∫ ∞
−∞

G(q, ω)(eiq⊥(z−z′) − eiq⊥(z+z′)) dq⊥ (15)

whereG is a bulk free-electron Green’s function:

G(q, ω) = [ω − Eq + iη sgn(Eq − EF)
]−1

. (16)

Taking the dispersionω = q2/2 and neglecting the recoil term for fast electrons leads to

G(q‖ − q′‖, q⊥ + v⊥, ω − ω′) ' −(ω′ − q‖ · q′‖ + q⊥v⊥ − iη)−1. (17)
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The condition for an electron moving from the interior of a metal towards the surface is
v⊥ > 0. The sign of the vertical velocity thus affects the analytic properties of the Green’s
function.

The local self-energies6in(z), for the incoming wave, and6out(z), for the outgoing
wave, are determined from

6in(z|q‖, v⊥)eiv⊥z −6out(z|q‖, v⊥)e−iv⊥z =
∫ 0

−∞
6(z < 0, z′ < 0|q‖)(eiv⊥z′ − e−iv⊥z′) dz′

(18)

where the variableω has been removed after taking the dispersion relation. By substituting
equations (12)–(17) into the above equation and making the change of the variablesq‖ → v‖,
q′‖ → q‖, ω′ → ω, we get

6in(z|v‖, v⊥)eiv⊥z −6out(z|v‖, v⊥)e−iv⊥z

= (2π)−4
∫

dq‖
∫ ∞
−∞

dp dω A(z|q‖, p, ω)B(q‖, p, ω|v‖, v⊥) (19)

where

B(q‖, p, ω|v‖, v⊥) =
∑

n=1,−1

neniv⊥z
∫ ∞
−∞

dq⊥ eiq⊥zG(v‖ − q‖, q⊥ + nv⊥, 1
2q

2− ω)

× [
(q⊥ + p − iη)−1− (q⊥ − p + iη)−1

]
. (20)

Equation (17) states thatG(q⊥ + v⊥) is analytical in the upper half-plane ofq⊥ for v⊥ > 0.
Becausez < 0, the contour integration in the above equation should be carried out in the
lower half-plane. Then, takingp as−q⊥ in equation (19) and comparing the two sides of
the equation for the incoming wave term exp(iv⊥z), we obtain finally

6in(z < 0) = − i

(2π)3

∫
dq‖

∫ ∞
−∞

dq⊥ dω eiq⊥z A(z|q, ω)
ω − q · v − iη

= 6b+6 i(z)+6s(z).

(21)

Hence, the self-energy of an electron moving towards the surface is made up of three
terms. The first term, which is independent ofz, describes the bulk excitation due to external
charge:

6b = 2

(2π)2

∫
dq

q2

∫ ∞
0

dω

(
1

ε(q, ω)
− 1

)
δ(ω − q · v) (22)

where we have used the following property of the time-ordered dielectric function:
ε(q, ω) = ε(−q,−ω). The rest of the terms account for the surface effect. The second
term, which is due to the image charge, is the boundary correction to the bulk term due to
the presence of the surface:

6 i(z) = − 2i

(2π)3

∫
dq‖

∫ ∞
0

dω
∫ ∞
−∞

dq⊥
q2ε(q, ω)

(
e−2iq⊥z

ω − q · v − iη
− e2iq⊥z

ω − q · v + iη

)
(23)

and the third one involving the surface dielectric function represents the surface excitation
contributed by the surface charges:

6s(z) = i

2π4

∫
dq‖

∫ ∞
0

dω q‖εs(q‖, ω)
∫ ∞
−∞

eiq⊥z dq⊥
q2ε(q, ω)

×
∫ ∞
−∞

dq⊥
q2ε(q, ω)

(
e−iq⊥z

ω − q · v − iη
− eiq⊥z

ω − q · v + iη

)
. (24)



Self-energy in surface electron spectroscopy: I 1737

For the outgoing wave, exp(−iv⊥z), p should be replaced by±q⊥ in equation (19) to
makeω − q‖ · v‖ ∓ pv⊥ − iη = ω − q · v − iη. One then finds the same expression for
the self-energy6out(z < 0) as for the incoming wave. The values are, however, different,
because the electron moves with actual vertical velocity−v⊥ < 0, except in the cases of
z = 0 and of an electron trajectory parallel to the surface.

2.3. Zero barrier height

When the surface barrier is negligible, a moving electron travels without reflection at the
surface. The surface Green’s function takes the form

Gs(zz
′|q‖, ω) = G(z− z′|q‖, ω) = (2π)−1

∫ ∞
−∞

dq⊥ G(q, ω)eiq⊥(z−z′) (25)

and the self-energy satisfies

6(z|q‖, v⊥)eiv⊥z =
∫ ∞
−∞

6(zz′|q‖)eiv⊥z′ dz′. (26)

Let us firstly consider the case wherez < 0. On using the relation∫ ∞
−∞

8(z < 0, z′|q‖)e−iq⊥z′ dz′ =
∫ ∞
−∞

dp
A(z|q‖, p, ω)
i(p − q⊥)+ η

− 2π

q‖(q‖ + iq⊥)

{
eq‖z − 2εs(q‖, ω)

q‖
π

∫ ∞
−∞

eiq⊥z dq⊥
q2ε(q, ω)

}
(27)

in equation (26) and making the change of variables as before, it can be seen that the self-
energy6in(z < 0) is identical to equation (21). The second term in the above equation due
to 8(z < 0, z′ > 0) gives a vanishing contribution to the self-energy as is seen by carrying
out contour integration ofq⊥ in lower half-plane.

When an electron is ejected into the vacuum (z > 0, v⊥ > 0), we can obtain the local
self-energy from equation (26) as the sum6out(z > 0) = 61(z)+62(z), where

61(z) = − 1

2π2

∫
dq‖

e−2q‖z

q‖

∫ ∞
0

dω [1− 2εs(q‖, ω)]
q‖v⊥

(ω − q‖ · v‖)2+ (q‖v⊥)2 (28)

62(z) = i

(2π)2

∫
dq‖

e−q‖z

q‖

∫ ∞
0

dω

{[
e−i(ω−q‖·v‖)z/v⊥

ω − q‖ · v‖ − iq‖v⊥
− CC

]
+ [1− 2εs(q‖, ω)]

[
e−i(ω−q‖·v‖)z/v⊥

ω − q‖ · v‖ + iq‖v⊥
− CC

]
− 2εs(q‖, ω)

q‖
π

∫ ∞
−∞

dq⊥
q2ε(q, ω)

[
e−i(ω−q‖·v‖)z/v⊥

ω − q · v − iη
− CC

]}
. (29)

61(z) is equal to the self-energy for an electron incident onto the surface from the vacuum
[14], 6in(z > 0), and also agrees with a semiclassical result.62(z), hence, vanishes for
v⊥ = 0.

It is easy to verify that the continuity at the surface is guaranteed for both the cases of
U = 0 andU = ∞, whereU stands for the barrier height:

6in(z = 0−;U = 0) = 6out(z = 0+;U = 0) = 6in(z = 0−;U = ∞)
= 6out(z = 0−;U = ∞)
= − 1

2π2

∫
dq

q2

∫ ∞
0

dω δ(ω − q · v)

+ 1

π2

∫
dq‖

∫ ∞
0

dω εs(q‖, ω)
∫ ∞
−∞

dq⊥
q2ε(q, ω)

δ(ω − q · v). (30)
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2.4. A parallel trajectory

Formulae (21)–(24), (28)–(29) are valid for arbitrary take-off angle of the direction of
movement of an electron with respect to the surface normal. Now we consider a specific
case:v⊥ = 0, i.e., the trajectory parallel to the surface, corresponding to glancing detection
geometry for scattering electrons. First, for an electron moving outside the solid with the
velocity vector along they-axis,61(z) can be simplified using

lim
v⊥→0

q‖v⊥
(ω − q‖ · v‖)2+ (q‖v⊥)2 = πδ(ω − q‖ · v‖) = πδ(ω − qyv) (31)

while 62(z) is equal to zero, guaranteeing that6in(z > 0) = 6out(z > 0). Defining the
energy-loss cross-sectionp(ω) as

−2 Im6(z) = v
∫
p(z|ω) dω (32)

and

ε−1
n (z|q‖, ω) =

q‖
π

∫ ∞
−∞

cos(nq⊥z)
dq⊥

q2ε(q, ω)
(33)

it is easy to perform the integration overqy and derive

p(z > 0|ω) = 2

πv2

∫ ∞
0

dqx
e−2Qz

Q
Im

{
ε0(Q,ω)− 1

ε0(Q,ω)+ 1

}
(34)

whereQ = √q2
x + (ω/v)2.

Next, we consider the case wherez < 0. The bulk term, equation (22), yields the bulk
excitation cross-section in the form

pb(ω) = 2

πv2

∫ ∞
0

dqx
Q

Im

{ −1

ε0(Q,ω)

}
. (35)

The surface excitation cross-section can also be easily obtained, considering that the
parentheses in equations (23) and (24) reduce to theδ-function of equation (31):

pi(z < 0|ω) = 2

πv2

∫ ∞
0

dqx
Q

Im

{ −1

ε2(z|Q,ω)
}

(36)

ps(z < 0|ω) = 2

πv2

∫ ∞
0

dqx
Q

Im

{
2ε0(Q,ω)

ε2
1(z|Q,ω) [1+ ε0(Q,ω)]

}
. (37)

The total excitation cross-section is thenp = pb + pi + ps. These expressions reproduce
the result obtained by Zabala and Echenique [8].

3. Plasmon excitation

3.1. The surface dielectric function and sum rules

Let us now look for the solution of the electron–surface inelastic interaction problem for a
system described by the dielectric function [18]

ε(q, ω) = 1+ ω2
p

ω2
q − ω2

p − ω(ω + iγ )
. (38)

The system has a single plasmon with the energyωp and damping constantγ . ωq denotes
a dispersion relation:

ω2
q = ω2

g + ω2
p + β2q2+ q4/4 (39)
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where the energyωg accounts for the band gap in a semiconductor.
The surface dielectric function defined by equation (4) can then be derived from the

residues of the integral. The poles ofε−1(q, ω) in the plane ofq⊥ are determined by

ω2
g + ω2

p − ω(ω + iγ )+ β2q2+ q4/4= 0. (40)

There are four roots,(±q1,±q2), for the solution of this equation, whereq1 and q2

denote two poles in the upper half-plane ofq⊥: arg(q1) ∈ [0, π/2]; arg(q2) ∈ [π/2, π ].
Hence, we found

ε−1
s (q‖, ω) = 1+ ε−1(ω)− i

4q‖ω2
p

q2
1 − q2

2

[
1

q1(q
2
1 + q2

‖ )
− 1

q2(q
2
2 + q2

‖ )

]
(41)

whereε(ω) stands forε(0, ω).
By finding four poles of the bulk energy-loss function,

Im

{ −1

ε(q, ω)

}
= ωγω2

p

(ω2− ω2
q)

2+ (ωγ )2 (42)

in theω-plane,(±ω1,±ω∗1), whereω1(q) =
√
ω2
q − (γ /2)2+ iγ /2, we may verify the bulk

f -sum rule:

µb
1(q) =

∫ ∞
0
ω Im

{ −1

ε(q, ω)

}
dω = 1

2
ω2
pγ

π i

ω1− ω∗1
= π

2
ω2
p (43)

and the perfect-screening sum rule:

µb
−1 = lim

q→0

∫ ∞
0

1

ω
Im

{ −1

ε(q, ω)

}
dω = 1

2
ω2
pγ

π i

ω1− ω∗1
1

|ω1(0)|2 =
π

2

(
ωp

ω0

)2

' π

2
(44)

whereω0 = ωq=0 =
√
ω2

g + ω2
p, for ωg� ωp.

Making the changeω2
q → ω2

q −ω2
p, the expression for Im{−1/ε(q, ω)} in equation (42)

becomes Im{ε(q, ω)}, and the corresponding bulk sum rules [19] are

νb
1(q) =

∫ ∞
0
ω Im {ε(q, ω)} dω = π

2
ω2
p (45)

νb
−1 = lim

q→0

∫ ∞
0

1

ω
Im {ε(q, ω)} dω = π

2

ω2
p

ω2
g

. (46)

It is natural that the surface dielectric function would also satisfy certain surface sum
rules. From the definitions given as equation (4) and equation (41), it is quite easy to see
that the surface energy-loss function satisfies the surfacef -sum rule

µs
1(q‖) =

∫ ∞
0
ω Im

{ −1

εs(q‖, ω)

}
dω = π

2
ω2
p = µb

1(q). (47)

Using equation (41), we have

µs
−1 = lim

q‖→0

∫ ∞
0

1

ω
Im

{ −1

εs(q‖, ω)

}
dω =

∫ ∞
0

1

ω
Im

{ −1

ε(ω)

}
dω = µb

−1. (48)

Two counterpart surface sum rules forS(q‖, ω) = 2π−1 Im{εs(q‖, ω)} have been given
by Gumhalter [20]. To verify them, we may note that

Im {εs(0, ω)} = 1

2

ωγω2
s

(ω2− ω2
0 + ω2

s)
2+ (ωγ )2 (49)
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whereωs = ωp/
√

2. Comparing this equation with equation (42) leads to

νs
−1 = lim

q‖→0

∫ ∞
0

1

ω
Im
{
εs(q‖, ω)

}
dω = π

4

ω2
s

ω2
s + ω2

g

' π

4
(50)

νs
1(q‖ = 0) =

∫ ∞
0
ω Im {εs(0, ω)} dω = π

4
ω2

s. (51)

In fact, equation (51) holds generally for arbitraryq‖:

νs
1(q‖) =

∫ ∞
0
ω Im

{
εs(q‖, ω)

}
dω = π

4
ω2

s (52)

which may be tested numerically.

3.2. The formula for the self-energy

The expression for the electron self-energy may be further simplified by integrating out
the q⊥-component using the dielectric function (38). By the argument used to derive equ-
ation (41), we obtain

H(q‖, ω) ≡ q‖
π

∫ ∞
−∞

eiq⊥z dq⊥
q2ε(q, ω)

= eq‖z

ε(ω)
− i

4q‖ω2
p

q2
1 − q2

2

[
e−iq1z

q1(q
2
1 + q2

‖ )
− e−iq2z

q2(q
2
2 + q2

‖ )

]
(53)

and

F±n (q‖, ω|v) ≡
q‖
π

∫ ∞
−∞

dq⊥
q2ε(q, ω)

e±inq⊥z

ω − q · v ± iη

= enq‖z

ε(ω)

1

ω − q‖ · v‖ ± iq‖v⊥
− i

4q‖ω2
p

q2
1 − q2

2

[
e−inq1z

q1(q
2
1 + q2

‖ )
1

ω − q‖ · v‖ ± q1v⊥

− e−inq2z

q2(q
2
2 + q2

‖ )
1

ω − q‖ · v‖ ± q2v⊥

]
. (54)

Moreover, the polar angles ofq‖ may be integrated out to give

P±n (q‖, ω|v) ≡
1

2π

∫ 2π

0
F±n (q‖, ω|v) dϕ

= enq‖z

ε(ω)
Q0(±iq‖)− i

4q‖ω2
p

q2
1 − q2

2

[
e−inq1z

q1(q
2
1 + q2

‖ )
Q0(±q1)

− e−inq2z

q2(q
2
2 + q2

‖ )
Q0(±q2)

]
(55)

and

R±(q‖, ω|v) ≡ 1

2π

∫ 2π

0
F±0 (q‖, ω|v) exp

{±i(ω − q‖ · v‖)z/v⊥
}

dϕ

= 1

ε(ω)
Q±1 (±iq‖)− i

4q‖ω2
p

q2
1 − q2

2

[
1

q1(q
2
1 + q2

‖ )
Q±1 (±q1)

− 1

q2(q
2
2 + q2

‖ )
Q±1 (±q2)

]
(56)
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where

Q±n (q) ≡
1

2π

∫ 2π

0
dϕ

exp
{±in(ω − q‖ · v‖)z/v⊥

}
ω − q‖ · v‖ + qv⊥ . (57)

ThoughQ1 can be expanded to a series involving Bessel functions, we prefer to use a direct
numerical integration routine.Q0 is written out explicitly as

Q±0 (q) = −
2

q‖v‖

1

ζ1− ζ2
[θ(1− |ζ1|)− θ(1− |ζ2|)] (58)

whereζ1,2(q) are the solutions of the equationζ 2− 2(q‖v‖)−1(ω+ qv⊥)ζ + 1= 0. θ(x) is
the Heaviside step function.

Finally, the surface self-energy terms forz < 0 in equations (23) and (24) become,
respectively,

6 i(z) = − i

2π

∫ E−EF

0
dω
∫ ∞

0
dq‖ (P−2 − P+2 ) (59)

6s(z) = i

π

∫ E−EF

0
dω
∫ ∞

0
dq‖ εs(q‖, ω)H(q‖, ω)(P−1 − P+1 ) (60)

whereE is electron kinetic energy. The bulk term is reduced by integrating overq to give

6b(z) = 2ω2
p

πv

∫ E−EF

0

dω

q2
1 − q2

2

{
1

q2
1 + q2

‖
ln

[
q2

q2− (q2
1 + q2

‖ )

]
− 1

q2
2 + q2

‖
ln

[
q2

q2− (q2
2 + q2

‖ )

]}∣∣∣∣∞
ω/v

. (61)

UsingQ0(−iq‖) =
[
Q0(iq‖)

]∗
andQ−1 (−iq‖) =

[
Q+1 (iq‖)

]∗
, the self-energy terms forz > 0

may be written as

61(z) = 1

π

∫ E−EF

0
dω
∫ ∞

0
dq‖ e−2q‖z(1− 2εs) Im{Q0(iq‖)} (62)

62(z) = 1

π

∫ E−EF

0
dω
∫ ∞

0
dq‖ e−q‖z[Im{Q+1 (iq‖)} − (1− 2εs) Im{Q−1 (iq‖)}

− iεs(R
− − R+)]. (63)

3.3. Numerical calculation results

Although Flores and Garcia-Moliner gave the quantum expression for the self-energy for an
electron penetrating through the surface from the vacuum side many years ago, numerical
estimates of the surface effects based on this theory are still lacking. The complex form of
the resulting expression has prevented it from being put into practical use. It is thus crucial
to perform numerical calculations in order to observe the various aspects of the theory.

Considering that equation (38) models the dielectric response for a nearly free-electron
material, we choose Si as the example on which to carry out a numerical investigation of
the self-energy and inelastic scattering cross-section. Figure 1 compares the energy-loss
functions, Im{−1/ε(ω)}, derived from the optical data and the present theoretical model,
with the parametersωp = 16.64 eV,ωg = 1.17 eV andγ = 4 eV.

In our previous study [21], an optical data model with the dispersion equationωq =
ωp + 1

2q
2 was adopted. To allow comparison of the present model calculation with the

previous results, the same dispersion relation was used—that is, we setβ = √ωp in
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Figure 1. A comparison of the surface energy-loss function (solid lines) with the bulk energy-loss
function (dashed lines). The thin and thick lines represent, respectively, the calculation results
obtained using an optical data model [21] and the present dielectric function, equation (38).

equation (39). Figure 1 shows the surface energy-loss function, Im{εs(q‖, ω)}, for two
representative values ofq‖. The intensity of the bulk plasmon loss peak obtained from the
model is slightly higher than that deduced from optical data and the surface plasmon peak
is correspondingly lower. However, the surface plasmon dispersion is, as expected, similar.

We scale the differential self-energȳ6(ω) and the double-differential self-energy
6̄(q‖, ω) so that

−2v−16(z) = 6̄(z) =
∫

dω 6̄(z|ω) =
∫

dω
∫ ∞

0
dq‖ 6̄(z|q‖, ω). (64)

Let 6̄ = b + ip; the real partb and imaginary partp represent, respectively, the scaled
image potential energy and the energy-loss cross-section. Because the double-differential
self-energy depends on many variables including the horizontal momentum transfer, energy
loss, depth, direction of movement and kinetic energy of an electron, we will only analyse
certain aspects in the following.

Figure 2(a) shows a plot of the real and imaginary parts of6̄(z < 0|q‖, ω) as functions
of ω. It can be seen that the image charge contributes positively top in the bulk plasmon
energy loss; the surface charges set up an energy-loss mechanism via surface plasmon
excitation and reduce the scattering probability of bulk plasmon excitation. The real part
behaves like a differential of the imaginary part in shape. It should be kept in mind that
the sum of the image charge term and the surface charge term is just the net surface effect
in the case of an electron inside the medium, and the bulk term should be added in order
to evaluate the total effect. When the electron is emitted into the vacuum (z > 0), only the
surface effect remains. Figure 2(b) indicates thatp2 andp1 are, respectively, the positive
and negative components of the energy-loss cross-section having a single peak at the surface
plasmon energy. From equation (28), the classical self-energy for an electron approaching
the surface from the vacuum is−(b1+ ip1).

The z-dependence (not shown here) of6̄(z|q‖, ω) shows that the surface effect is the
most pronounced atz = 0 and vanishes forz → ±∞. The trend of the variation will be
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(a) (b)

Figure 2. The double-differential self-energy as a function ofω at the given values of the
horizontal wave vectorq‖, distance from the surfacez, take-off angleϑ and kinetic energyE.
b andp are respectively the real and imaginary parts of the scaled self-energy, equation (64).
The superscripts i and s refer to equations (59) and (60) forz < 0, and subscripts 1 and 2 to
(62) and (63) forz > 0, respectively.

seen later from the perspective plot of6̄(ω) versusz andω.
Figures 3 and 4 show perspective plots of6̄(q‖, ω) for an electron inside the medium and

in the vacuum, respectively. The peak positions of the surface plasmon and bulk plasmon
in figure 3(a) are determined by the intersection of the plasmon dispersion and the resonant
condition for plasmon excitation. This is what the term(ω− q‖ · v‖ ± q1,2v⊥)−1 implies in
equation (54). In the case of an electron moving parallel to the surface, the dispersion effect
involved in the imaginary part of the term diminishes and the term becomesδ(ω−q‖v)—the
matching of the phase velocity of the plasmon with the electron velocity.

For z > 0, only the surface plasmon excitation peak remains in figure 4(a). In the
case of an electron moving normal to the surface, the analysis is simple:Q0(iq‖) becomes
(ω+ iq‖v)−1 whose imaginary part reaches a maximum atω→ 0 andq‖ → 0 and extends
along the lineω = q‖v. This factor, together with the exponential decay factor inq‖ and the
dispersion involved in Im{εs(q‖, ω)} governs the shape ofp1 as described by equation (62).

Figure 5 shows the variation of̄6(q‖, ω) with ω and take-off angle,θ , defined as the
angle between the velocity vector and the surface normal. A large variation is found at
the bulk plasmon energy and for the glancing conditionθ → π/2. It is interesting to note
that, for an electron moving outside the medium, there is still a small possibility for bulk
plasmon excitation due solely to a surface effect if the electron is quite near to the surface.

Figure 6 shows the variation of the imaginary part of the differential self-energy, the
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(a)

(b)

Figure 3. A perspective view of the double-differential self-energy as a function ofω andq‖
for z = −1 Å. (a) The imaginary-part termpi + ps. (b) The real-part termbi + bs. The super-
scripts i and s refer to equations (59) and (60) respectively.

energy-loss distribution of electrons, with the distance from the surface. The transition from
the bulk plasmon excitation mode to the surface plasmon excitation mode as the electron
leaves the surface is clearly seen. The surface plasmon excitation is then the most probable
at z = 0. The calculation of the energy-loss distribution of protons travelling parallel to
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(a)

(b)

Figure 4. A perspective view of the double-differential self-energy, as a function ofω andq‖
for z = 1 Å. (a) The imaginary-part termp1 + p2. (b) The real-part termb1 + b2. The sub-
scripts 1 and 2 refer to equations (62) and (63) respectively.

an Al surface [10] has shown a similar behaviour, except that the position of the most
probable surface plasmon excitation is at the electronic surface which was set at some
distance from the geometrical surface. The effective surface excitation region extends into
both the vacuum and the solid, to a distance aboutv/ω. The vacuum region contributes
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(a)

(b)

Figure 5. A perspective view of the imaginary part of the double-differential self-energy as a
function of ω and θ : (a) for z < 0, calculated from equations (59) and (60); (b) forz > 0,
calculated from equations (62) and (63).

almost half of the total energy-loss process; any theory ignoring this point [11] considerably
underestimates the surface contributions. The present calculation scheme for the electron
energy-loss distribution, with the full knowledge of the dependency on the kinetic energy,
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Figure 6. A perspective view of the imaginary part of the differential self-energy as a function
of ω andz.

Figure 7. A perspective view of the imaginary part of the differential self-energy as a function
of ω andE. A cut-off is imposed atω = E − EF.

take-off angle and depth, should be useful in theoretical investigations in surface chemical
analysis; for example, quantitative reflection electron energy-loss spectroscopy analysis can
then be carried out by analysing the shape of the loss spectrum instead of by simple peak
position analysis [23].

The kinetic energy dependency of the energy-loss distribution is shown by figure 7.
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(a)

(b)

Figure 8. A perspective view of the imaginary part of the differential self-energy as a function
of ω andθ . (a) z < 0. (b) z > 0.

A non-monotonic variation is found. For a specific value of the excitation energyω, the
energy dependence of the excitation function is analogous to the ionization cross-section
having a maximum at an overvoltage ratioE/ω around 2.

Figure 8 shows the angular dependency of the energy-loss distribution. A smooth change
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(a)

(b)

Figure 9. A comparison of the complex differential self-energies obtained from the calculations
using dispersive (thick lines) and non-dispersive (thin lines) dielectric functions. (a)z < 0.
(b) z > 0.

with take-off angle is found: forz < 0, the excitation probability of the surface plasmon
increases withθ while that of the bulk plasmon decreases; forz > 0, a largerθ -value lowers
the surface plasmon excitation probability.

To see how the plasmon dispersion affects the differential self-energy, a comparison has
been made between the dispersive and non-dispersive dielectric function formulations in
figure 9. The non-dispersive dielectric functionε(ω) is obtained by omitting the dispersion
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Figure 10. A comparison of thez-dependence of the complex self-energies obtained from the
calculations using dispersive (thick lines) and non-dispersive (thin lines) dielectric functions.

in equation (38). Then, the terms involvingq1,2-factors in equations (41) and (53)–(56)
should be neglected. It can be seen that the dispersive calculation result for Im6̄(ω) differs
significantly from the non-dispersive one. In particular, forz > 0, the surface plasmon peak
in the non-dispersive energy-loss distribution has not been predicted correctly.

Figure 10 shows the comparison between the dispersive and non-dispersive dielectric
function formulations for the calculated complex electron self-energy,6̄(z), for plasmons.
It is obvious that the non-dispersive calculation yields a divergent imaginary part of the self-
energy forz→ 0+, as found previously [5]. The non-dispersive real part of the self-energy,
the image potential, is finite atz → 0+ [5] and is closer to the classical image potential,
−1/4z for z→∞, than the dispersive result. Note that the scaled image potential should
be positive. The dispersive self-energy is continuous atz = 0 and decreases rapidly to zero
asz→∞. The tendency of the change withz is quite reasonable and agrees qualitatively
with other theories [5, 22].

4. Conclusions

In conclusion, we have derived an expression for the self-energy of a fast charged particle
escaping from a solid to a vacuum for arbitrary take-off angle in terms of an arbitrary
bulk dielectric functionε(q, ω). The imaginary parts of equations (23), (24) and (28),
(29) provide a detailed knowledge of the surface excitation cross-section including the
dependence on the distance from the surface, kinetic energy and velocity vector of the
particles in addition to the dependence on the energy loss and momentum transfer from the
particle to medium. This knowledge will be useful for analysing the energy-loss spectrum
in surface electron spectroscopies.

A Drude–Lindhard model bulk dielectric functionε(q, ω) for describing a free-electron-
like material is adopted to obtain a computable scheme for analysing the excitation processes
of surface and bulk plasmon modes. A numerical calculation for Si has been performed
to demonstrate how the complex self-energy changes with the distance from the surface,
kinetic energy and take-off angle.
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